def parallel_jaccard_similarity(self,x,y):
p = 16
pool = mp.Pool(processes= p)
chunk_X = []
chunk_Y = []
for i in range(0, len(x), p):
chunk_X.append(x[int(i):int((i+1)*p)])
chunk_Y.append(y[int(i):int((i+1)*p)])
s = time.clock()
intersection_cardinality = sum(pool.starmap(self.interc_card_locl, zip(chunk_X,chunk_Y)))
union_cardinality = sum(pool.starmap(self.union_card_locl, zip(chunk_X,chunk_Y)))
print(intersection_cardinality, union_cardinality)
e = time.clock()
print("Parallel Jaccard Exec Time: ", e-s)
return intersection_cardinality/float(union_cardinality)
Similarity Metrics - In Parallel.py 文件源码
python
阅读 43
收藏 0
点赞 0
评论 0
评论列表
文章目录