def training(self):
training_dir = self._training_dir
hyperparam_path = os.path.join(training_dir, 'hyperparams-config.yaml')
model_weights_path = os.path.join(training_dir, 'model-weights.hdf5')
config_builder = config.FileConfigBuilder(hyperparam_path)
config_dict = config_builder.build_config()._asdict()
if self._config_override:
config_dict.update(self._config_override)
config_dict['time_limit'] = parse_timedelta(
config_dict['time_limit'])
if 'epochs' in self._config_override:
config_dict['time_limit'] = None
elif 'time_limit' in self._config_override:
config_dict['epochs'] = None
conf = config.Config(**config_dict)
model_weights_path = (model_weights_path if self._load_model_weights
else None)
return Training(training_label=self._new_training_label,
conf=conf,
model_weights_path=model_weights_path,
log_metrics_period=self._log_metrics_period,
explode_patience=sys.maxsize)
评论列表
文章目录